
SDNRG Y. Xia, Ed.
Internet-Draft S. Jiang, Ed.
Intended status: Standards Track T. Zhou, Ed.
Expires: November 5, 2015 S. Hares
 Huawei Technologies Co., Ltd
 May 4, 2015

 NEMO (NEtwork MOdeling) Language
 draft-xia-sdnrg-nemo-language-02

Abstract

 The North-Bound Interface (NBI), located between the control plane
 and the applications, is essential to enable the application
 innovations and nourish the eco-system of SDN.

 While most of the NBIs are provided in the form of API, this document
 proposes the NEtwork MOdeling (NEMO) language which is intent based
 interface with novel language fashion. Concept, model and syntax are
 introduced in the document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 5, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Xia, et al. Expires November 5, 2015 [Page 1]

http://tools.ietf.org/pdf/bcp78
http://tools.ietf.org/pdf/bcp79
http://datatracker.ietf.org/drafts/current/
http://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-Draft NEtwork MOdeling Language May 2015

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4 .e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Requirements for the Intent Based NBI Language 4
 4. Related work . 5
 5. The NEMO Language Specifications 6
 5.1 . Network Model of the NEMO Language 6
 5.2 . Notation . 7
 5.3 . NEMO Language Overview 8
 5.4 . Model Definition . 9
 5.4.1 . Data Types . 9
 5.4.2 . Model Definition and Description Statement 10
 5.5 . Resource Access Statements 11
 5.5.1 . Node Operations 12
 5.5.2 . Connection Operations 12
 5.5.3 . Flow Operations 13
 5.6 . Behavior Statements 14
 5.6.1 . Query Behavior 14
 5.6.2 . Policy Behavior 14
 5.6.3 . Notification Behavior 17
 5.7 . Connection Management Statements 17
 5.8 . Transaction Statements 18
 6. The NEMO Language Examples 18
 7. Security Considerations 20
 8. IANA Considerations . 20
 9. Acknowledgements . 20
 10. Informative References 20
 Authors’ Addresses . 21

1. Introduction

 While SDN (Software Defined Network) is becoming one of the most
 important directions of network evolution, the essence of SDN is to
 make the network more flexible and easy to use. The North-Bound
 Interface (NBI), located between the control plane and the
 applications, is essential to enable the application innovations and
 nourish the eco-system of SDN by abstracting the network
 capabilities/information and opening the abstract/logic network to
 applications.

Xia, et al. Expires November 5, 2015 [Page 2]

Internet-Draft NEtwork MOdeling Language May 2015

 The NBI is usually provided in the form of API (Application
 Programming Interface). Different vendors provide self-defined API
 sets. Each API set, such as OnePK from Cisco and OPS from Huawei,
 often contains hundreds of specific APIs. Diverse APIs without
 consistent style are hard to remember and use, and nearly impossible
 to be standardized.

 In addition, most of those APIs are designed by network domain
 experts, who are used to thinking from the network system
 perspective. The interface designer does not know how the users will
 use the device and exposes information details as much as possible.
 It enables better control of devices, but leaves huge burden of
 selecting useful information to users without well training. Since
 the NBI is used by network users, a more appropriate design is to
 express user intent and abstract the network from the top down.

 To implement such an NBI design, we can learn from the successful
 case of SQL (Structured Query Language), which simplified the
 complicated data operation to a unified and intuitive way in the form
 of language. Applications do not care about the way of data storage
 and data operation, but to describe the demand for the data storage
 and operation and then get the result. As a data domain DSL, SQL is
 simple and intuitive, and can be embedded in applications. So what
 we need for the network NBI is a set of "network domain SQL".
 [I-D.xia-sdnrg-service-description-language] describe the
 requirements for a service description language and the design
 considerations.

 This document will introduce an intent based NBI with novel language
 fashion.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119] when they appear in ALL CAPS. When these words are not in
 ALL CAPS (such as "should" or "Should"), they have their usual
 English meanings, and are not to be interpreted as [RFC2119] key
 words.

 Network service also "service" for short, is the service logic that
 contains network operation requirements;

 Network APP also "APP" for short, is the application to implement
 the network service;

Xia, et al. Expires November 5, 2015 [Page 3]

http://tools.ietf.org/pdf/rfc2119
http://tools.ietf.org/pdf/rfc2119

Internet-Draft NEtwork MOdeling Language May 2015

 Network user also "user" for short, is the network administrator or
 operator.

3. Requirements for the Intent Based NBI Language

 An intent based NBI language design contains following features:

 o Express user intent

 To simplify the operation, applications or users can use the NBI
 directly to describe their requirements for the network without
 taking care of the implementation. All the parameters without
 user concern will be concealed by the NBI.

 o Platform independent

 With the NBI, the application or user can description of network
 demand in a generic way, so that any platform or system can get
 the identical knowledge and consequently execute to the same
 result. Any low-level and device/vendor specific configurations
 and dependencies should be avoided.

 o Intuitive Domain Specific Language (DSL) for network

 The expression of the DSL should be human-friendly and be easily
 understood by network operators. DSL should be directly used by
 the system.

 o Privilege control

 Every application or user is authorized within a specific network
 domain, which can be physical or virtual. While different network
 domains are isolated without impact, the application or user may
 have access to all the resource and capabilities within its
 domain. The user perception of the network does not have to be
 the same as the network operators. The NBI language works on the
 user’s view so the users can create topologies based on the
 resources the network-operators allow them to have.

 o Declarative style

 As described above, the NBI language is designed to help defining
 service requirement to network, detailed configurations and
 instructions performed by network devices are opaque to network
 operators. So the NBI language should be declarative rather than
 imperative.

Xia, et al. Expires November 5, 2015 [Page 4]

Internet-Draft NEtwork MOdeling Language May 2015

4. Related work

 YANG [RFC6020] is a data modeling language used to model
 configuration and state data manipulated by the Network Configuration
 Protocol (NETCONF) [RFC6241], NETCONF remote procedure calls, and
 NETCONF notifications.

 UML (Unified Modeling Language) is a powerful modeling language,
 which is domain agnostic. YANG and UML all focus on syntax
 specification which formulate grammatical structure of NBI language,
 however, they do not have the ability to express users’ real
 semantics. NBI language should facilitate users to express their own
 intent explicitly, instead of general complying with grammar syntax.
 So YANG and UML is appropriate to describe the model behind the NBI
 language not the NBI itself.

 With the emergence of the SDN concept, it is a consensus to simplify
 the network operation, which leads to many cutting-edge explorations
 in the academic area.

 Nick McKeown from Stanford University proposed the SFNet [TSFNet],
 which translated the high level network demand to the underlying
 controller interfaces. By concealing the low level network details,
 the controller simplified the operation of resource, flow, and
 information for applications. The SFNet is used for the SDN
 architecture design, and does not go into the NBI design.

 Jennifer from Princeton University designed the Frenetic [Frenetic]
 based on the OpenFlow protocol. It is an advanced language for flow
 programming, and systematically defines the operating model and mode
 for the flow. However, the network requirement from the service is
 not only the flow operations, but also includes operations of
 resource, service conditions, and service logic.

 In the book [PBNM], John Strassner defined the policy concept and
 proposed the formal description for network operations by using the
 policy. The method for querying network information is absent in the
 book. Virtual tenant network and operations to the tenant network
 are not considered.

 All these investigations direct to the future SDN that use simple and
 intuitive interfaces to describe the network demands without complex
 programming.

Xia, et al. Expires November 5, 2015 [Page 5]

http://tools.ietf.org/pdf/rfc6020
http://tools.ietf.org/pdf/rfc6241

Internet-Draft NEtwork MOdeling Language May 2015

5. The NEMO Language Specifications

 NEMO language is a domain specific language (DSL) based on
 abstraction of network models and conclusion of operation patterns.
 It provides NBI fashion in the form of language. Instead of tons of
 abstruse APIs, with limited number of key words and expressions, NEMO
 language enables network users/applications to describe their demands
 for network resources, services and logical operations in an
 intuitive way. And finally the NEMO language description can be
 explained and executed by a language engine.

5.1 . Network Model of the NEMO Language

 Behind the NEMO language, there is a set of basic network models
 abstracting the network demands from the top down according to the
 service requirement. Those demands can be divided into two types:
 the demand for network resources and the demands for network
 behaviors.

 The network resource is composed of three kinds of entities: node,
 connection and flow. Each entity contains property and statistic
 information. With a globally unique identifier, the network entity
 is the basic object for operation. Users can construct their own
 topology or network traffic arbitrarily with these basic objects
 without considering about real physical topology. In addition, NEMO
 Engine also has the ability of obtaining available resources
 automatically as operation objects when users don’t define them.

 o Node model: describes the entity with the capability of packet
 processing. According to the functionality, there are two types
 of node

 * The function node (FN) provides network services or forwarding
 with user concern, such as, firewall, load balance, vrouter,
 etc.

 * The business node (BN) describes a set of network elements and
 their connections, such as subnet, autonomous system, and
 internet. It conceals the internal topology and exposes
 properties as one entity. It also enables iteration, i.e., a
 network entity may include other network entities.

 o Connection model: describes the connectivity between node
 entities. This connection is not limited at the connectivity
 between single entity and single entity, but it also can express
 the connectivity between single entity and multiply entities, or
 multiply entities and multiply entities.

Xia, et al. Expires November 5, 2015 [Page 6]

Internet-Draft NEtwork MOdeling Language May 2015

 o Flow model: describes a sequence of packets with certain common
 characters, such as source/destination IP address, port, and
 protocol. From the northbound perspective, flow is the special
 traffic with user concern, which may be per device or across many
 devices. So the flow characters also include ingress/egress node,
 and so on.

 Network behavior includes the information and control operations.

 The information operation provides two methods to get the network
 information for users.

 o Query: a synchronous mode to get the information, i.e., one can
 get the response when a request is sent out.

 o Notification: an asynchronous mode to get the information, i.e.,
 with one request, one or multiple responses will be sent to the
 subscriber automatically whenever trigger conditions meet.

 The NEMO language uses policy to describe the control operation.

 o Policy: control the behavior of specific entities by APP, such as
 flow policy, node policy. All the policies follow the same
 pattern "when <condition>, to execute <action>, with
 <constraint>", and can be applied to any entity. But some of
 policy elements can be omitted according to users’ requirement.

5.2 . Notation

 The syntactic notation used in this specification is an extended
 version of BNF ("Backus Naur Form" or "Backus Normal Form"). In BNF,
 each syntactic element of the language is defined by means of a
 production rule. This defines the element in terms of a formula
 consisting of the characters, character strings, and syntactic
 elements that can be used to form an instance of it. The version of
 BNF used in this specification makes use of the following symbols:

 < >

 Angle brackets delimit character strings that are the names of
 syntactic elements.

 ::=

 The definition operator. This is used in a production rule to
 separate the element defined by the rule from its definition. The
 element being defined appears to the left of the operator and the
 formula that defines the element appears to the right.

Xia, et al. Expires November 5, 2015 [Page 7]

Internet-Draft NEtwork MOdeling Language May 2015

 []

 Square brackets indicate optional elements in a formula. The portion
 of the formula within the brackets may be explicitly specified or may
 be omitted.

 { }

 Braces group elements in a formula. The portion of the formula
 within the braces shall be explicitly specified.

 |

 The alternative operator. The vertical bar indicates that the
 portion of the formula following the bar is an alternative to the
 portion preceding the bar. If the vertical bar appears at a position
 where it is not enclosed in braces or square brackets, it specifies a
 complete alternative for the element defined by the production rule.
 If the vertical bar appears in a portion of a formula enclosed in
 braces or square brackets, it specifies alternatives for the contents
 of the innermost pair of such braces or brackets.

 !!

 Introduces ordinary English text. This is used when the definition
 of a syntactic element is not expressed in BNF.

5.3 . NEMO Language Overview

 NEMO language provides 5 classes of commands: model definition,
 resource access, behavior, connection management, transaction to
 facilitate the user intent description.

 <NEMO_cmd> := <model_definition_cmd> | <resource_access_cmd> |
 <behavior_cmd>
 <model_definition_cmd> := <node_definition> | <connection_difinition> |
 <action_deifinition> | <model_description>
 <resource_access_cmd> := <node_cu> | <node_del> | <connection_cu> |
 <connection_del> | <flow_cu> | <flow_del>
 <behavior_cmd> := <query_cmd> | <policy_cu> | <policy_del> |
 <notification_cu> | <notification_del>
 <connection_mgt_cmd> := <connect_cmd> | <disconnect_cmd>
 <transaction_cmd> := <transaction_begin> | <transaction _end>

 NEMO language provides limited number of key words to enables network
 users/applications to describe their intent. The key words supported
 by the language are as follows:

Xia, et al. Expires November 5, 2015 [Page 8]

Internet-Draft NEtwork MOdeling Language May 2015

 <key_word> := Boolean | Integer | String | Date | UUID | EthAddr |
 IPPrefix | NodeModel | ConnectionModel | FlowModel |
 ActionModel | Description | Porperty | Node | Connection|
 Flow | No | EndNodes | Type | NW | Match | List |
 Range| Query | From | Notification | Listener |
 Policy | ApplyTo | Priority | Condition | Action |
 Connect | Disconnect | Address | Port | Transaction |
 Commit

5.4 . Model Definition

5.4.1 . Data Types

 NEMO language provides several build-in data types:

 Boolean This data type is used for simple flags that track true/
 false conditions. There are only two possible values: true and
 false. The Boolean literal is represented by the token <boolean>.

 Integer A number with an integer value, within the range from
 -(2^63) to +(2^63)-1. The Integer literal is represented by the
 token <integer>.

 String A sequence of characters. The string is always in the
 quotation marks. The String literal is represented by the token
 <string>.

 Date A string in the format yyyy-mm-dd hh:mm:ss, or yyyy-mm-dd, or
 hh:mm:ss. The Date literal is represented by the token <date>.

 UUID A string in the form of Universally Unique IDentifier
 [RFC4122], e.g. "6ba7b814-9dad-11d1-80b4-00c04fd430c8". A
 typical usage of the UUID is to identify network entities,
 policies, actions and so on. The UUID literal is represented by
 the token <UUID>.

 EthAddr A string in the form of MAC address, e.g.
 "00:00:00:00:00:01". The EthAddr literal is represented by the
 token <eth_addr>.

 IPPrefix A string in the form of IP address, e.g. "192.0.2.1". The
 mask can be used in the IP address description, e.g.
 "192.0.2.0/24". The IPPrefix literal is represented by the token
 <ip_prefix>.

 The token <data_type> can be defined as follows:

Xia, et al. Expires November 5, 2015 [Page 9]

http://tools.ietf.org/pdf/rfc4122

Internet-Draft NEtwork MOdeling Language May 2015

 <data_type> := Boolean | Integer | String | Date | UUID |
 EthAddr | IPPrefix

 And a generic <data_type> literal is represented by the token <value>

 <value> := <boolean> | <integer> | <string> | <date> | <UUID> |
 <eth_addr> | <ip_ prefix>

5.4.2 . Model Definition and Description Statement

 In addition to default build-in network models, NEMO language
 facilitates users to define new model types.

 The token <naming> is a string that MUST start with a letter and
 followed by any number of letters and digits. More specific naming
 can be defined as follows:

 <node_type> := <naming> !!type name of the node model
 <connection_type> := <naming> !!type name of the connection model
 <flow_type> := <naming> !!type name of the flow model
 <entity_type> := <node_type> | <connection_type> | <flow_type>
 <action_type> := <naming> !!type name of the action model
 <model_type> := <entity_type> | <action_type>
 <property_name> := <naming> !!name of the property in a model

 The <node_definition> statement is used to create a node model:

 <node_definition> := NodeModel <node_type>
 Property { <data_type> : <property_name> };

 The NodeModel specifies a new node type.

 The Property is followed by a list of "<data_type> : <property_name>"
 pairs to specify properties for the new node type. Since belonging
 network is the intrinsic property for a node model, there is no need
 to redefine the belonging network in the property list.

 Example:

 NodeModel "DPI" Property String : "name", Boolean : "is_enable"; The
 statement generates a new node model named DPI with two properties,
 "name" and "is_enable".

 The <connection_definition> statement is used to create a connection
 model:

 <connection_definition> := ConnectionModel <connection_type>
 Property { <data_type> : <property_name> };

Xia, et al. Expires November 5, 2015 [Page 10]

Internet-Draft NEtwork MOdeling Language May 2015

 The ConnectionModel specifies a new connection type.

 The Property is followed by a list of "<data_type> : <property_name>"
 pairs to specify properties for the new connection type. Since end
 nodes are intrinsic properties for a connection model, there is no
 need to redefine the end nodes in the property list.

 The <flow_definition> statement is used to create a flow model:

 <flow_definition> := FlowModel <flow_type>
 Property { <data_type> : <property_name> };

 The FlowModel specifies a new flow type.

 The Property is followed by a list of "<data_type> : <property_name>"
 pairs to specify fields for the new flow type. The
 <action_definition> statement is used to create an action model:

 <action_definition> := ActionModel <action_type>
 Property { <data_type> : <property_name> };

 The ActionModel specifies a new action type.

 The Property is followed by a list of "<data_type> : <property_name>"
 pairs to specify properties for the new action.

 NEMO language also supports querying the description of a defined
 model by using the <model_description> statement:

 <model_description> := Description <model_type>;

 The keyword Description is follow by a model type name. The
 description of the queried model will return from the language
 engine.

5.5 . Resource Access Statements

 In NEMO language, each resource entity instance is identified by a
 <UUID>. We use the following token to indicate the identifier given
 to the resource entity instance.

 <node_id> := <naming> !! name to identify the node instance
 <connection_id> := <naming> !! name to identify the connection instance
 <flow_id> := <naming> !! name to identify the flow instance
 <entity_id> := <node_id>|<connection_id>|<flow_id>

Xia, et al. Expires November 5, 2015 [Page 11]

Internet-Draft NEtwork MOdeling Language May 2015

5.5.1 . Node Operations

 The <node_cu> statement is used to create or update a node instance:

 <node_cu> := Node <node_id> Type <node_type>
 NW <node_id>
 [Property {<property_name>: <value>}];

 The Node is followed by a user specified <node_id>. If the <node_id>
 is new in the system, a new node will be created automatically.
 Otherwise, the corresponding node identified by <node_id> will be
 updated with the following information.

 The Type specifies the type of the node to operate.

 The NW specifies the dependence where the node is located.

 The Property is an optional keyword followed by a list of
 "<property_name>: <value>" pairs. Multiple "<property_name>:
 <value>" pairs are separated by commas. The <property_name> MUST be
 selected from the property definition of the corresponding node
 definition.

 Node "Headquater"
 Type "logicnw"
 NW "LN-1"
 Property "location" : "Beijing";

 The statement creates a switch type node that is located in the
 logical network "LN-1".

 The <node_del> statement is used to delete a node instance:

 <node_del> := No Node <node_id>;

 The No Node is to delete a node in user’s network.

5.5.2 . Connection Operations

 The <connection_cu> statement is used to create or update a
 connection:

 <connection_cu> := Connection <connection_id>
 EndNodes <node_id>, <node_id>
 [Property {<property_name>: <value>}];

 The Connection is followed by a user specified <connection_id>. If
 the <connection_id> is new in the system, a new connection will be

Xia, et al. Expires November 5, 2015 [Page 12]

Internet-Draft NEtwork MOdeling Language May 2015

 created automatically. Otherwise, the corresponding connection
 identified by the <connection_id> will be updated with the following
 information.

 The EndNodes specifies the two end nodes, identified by "<node_type>
 : <node_id>", of a connection. The Property is an optional keyword
 followed by a list of "<property_name>: <value>" pairs. Multiple
 "<property_name>: <value>" pairs are separated by commas. The
 <property_name> MUST be selected from the property definition of the
 corresponding connection definition.

 Example:

 Connection "connection-1"
 EndNodes "S1", "S2"
 Property "bandwidth" : 1000, "delay" : 40;

 The statement creates a connection between two nodes, and sets the
 connection property.

 The <connection_del> statement is used to delete a node instance:

 <connection_del> := No Connection <connection_id>;

 The No Connection is to delete a connection in user’s network.

5.5.3 . Flow Operations

 The <flow_cu> statement is used to create or update a flow:

 <flow_cu> := Flow <flow_id> Match {<property_name>: <value>
 | Range (<value>, <value>)
 | List({<value>})}

 The Flow is followed by a user defined <flow_id>. If the <flow_id>
 is new in the system, a new flow will be created automatically.
 Otherwise, the corresponding flow identified by the <flow_id> will be
 updated with the following information.

 The Match specifies a flow by indicate match fields. NEMO language
 also provides two keywords to assist the expression of values:

 o The List is used to store a collection of data with the same data
 type.

 o The Range is used to express a range of values.

 Example:

Xia, et al. Expires November 5, 2015 [Page 13]

Internet-Draft NEtwork MOdeling Language May 2015

 Flow "flow-1"
 Match "src_ip" : Range ("192.0.2.1", "192.0.2.243");

 The statement describes a flow with the source IP address ranging
 from 192.0.2.1 to 192.0.2.243.

 The <flow_del> statement is used to delete a flow instance:

 <flow_del> := No Flow <flow_id>;

 The No Flow is to delete a flow in user’s network.

5.6 . Behavior Statements

5.6.1 . Query Behavior

 The query statement is to retrieve selected data from specified model
 object.

 The <query_statement> generate a query:

 <query_cmd> := Query {<property_name>}
 From {<entity_id>|<policy_id>}

 The Query is followed by one or more <property_name>s which are
 defined properties of the object to be queried.

 The From is followed by the one or more queried objects. NENO
 language support query operation to network entities and the policy.

5.6.2 . Policy Behavior

 In NEMO language, each policy instance is identified by a <naming>

 <policy_id> := <naming> !! name to identify the policy instance

 Create and update a policy

 <policy_cu> := Policy <policy_id> ApplyTo <entity_id>
 Priority <integer>
 [Condition {<expression>}]
 Action {<action_type> : {<value>}}
 [Constraint {<expression>}];

 The Policy is followed by a user defined <policy_id>. If the
 <policy_id> is new in the system, a new policy will be created
 automatically. Otherwise, the corresponding notification identified
 by the <policy_id> will be updated with the following information.

Xia, et al. Expires November 5, 2015 [Page 14]

Internet-Draft NEtwork MOdeling Language May 2015

 The ApplyTo specifies the entity to which the policy will apply.

 The Priority specifies the globe priority of the policy in the tenant
 name space. The <value> with lower number has a higher priority,
 i.e. priority 0 holds the highest priority.

 The Condition is an optional keyword follow by an expression. It
 tells your program to execute the following actions only if a
 particular test described by the expression evaluates to true. And
 users also can define which objects won’t need to execute these
 actions with Constraint.

 A NEMO language expression is a construct made up of variables,
 operators, and method invocations, which are constructed according to
 the syntax of the language and evaluates to a single value. NEMO
 language supports many operators to facilitate the construction of
 expressions. Assume variable A holds 10 and variable B holds 0,
 then:

Xia, et al. Expires November 5, 2015 [Page 15]

Internet-Draft NEtwork MOdeling Language May 2015

 +----------+--+---------+
 | Operator | Description | Example |
 +----------+--+---------+
&&	Called Logical AND operator. If both the	(A &&				
	operands are non-zero, then the condition	B) is				
	becomes true.	false.				
			Called Logical OR Operator. If any of the	(A		
	two operands are non-zero, then the	B) is				
	condition becomes true.	true.				
!	Called Logical NOT Operator. Use to reverses	!(A &&				
	the logical state of its operand. If a	B) is				
	condition is true then Logical NOT operator	true.				
	will make false.					
==	Checks if the values of two operands are	(A ==				
	equal or not, if yes then condition becomes	B) is				
	true.	not				
		true.				
!=	Checks if the values of two operands are	(A !=				
	equal or not, if values are not equal then	B) is				
	condition becomes true.	true.				
>	Checks if the value of left operand is	(A > B)				
	greater than the value of right operand, if	is not				
	yes then condition becomes true.	true.				
>=	Checks if the value of left operand is	(A >=				
	greater than or equal to the value of right	B) is				
	operand, if yes then condition becomes true.	not				
		true.				
<	Checks if the value of left operand is less	(A < B)				
	than the value of right operand, if yes then	is				
	condition becomes true.	true.				
<=	Checks if the value of left operand is less	(A <=				
	than or equal to the value of right operand,	B) is				
	if yes then condition becomes true.	true.				
 +----------+--+---------+

 The Action specifies the execution when conditions meet.

 Example:

 Policy "policy-1"
 ApplyTo "flow-1"
 Priority 100
 Condition ("time">"18:00") || ("time"<"21:00")
 Action "gothrough" : "backup_connection";

 The statement creates a policy which indicates the flow to go through
 backup connection from 18:00 to 21:00.

Xia, et al. Expires November 5, 2015 [Page 16]

Internet-Draft NEtwork MOdeling Language May 2015

 Delete a policy:

 <policy_del> := No Policy <policy_id>;

 The No Policy is to delete a policy in user’s network.

5.6.3 . Notification Behavior

 In NEMO language, each notification instance is identified by a
 <naming>

 <notification_id> := <naming> !! name to identify the notification
 instance

 Create and update a notification

 <notification_cu> := Notification <notification_id>
 [(Query {<property_name>}
 From {<entity_id>})]
 Condition {<expression>}
 Listener <callbackfunc>;

 The Notification is followed by a user defined <notification_id>. If
 the <notification_id> is new in the system, a new notificaiton will
 be created automatically. Otherwise, the corresponding notification
 identified by the <notification_id> will be updated with the
 following information.

 The Query clause is nested in the notification statement to indicate
 the information acquisition.

 The Condition clause is the same as in policy statement, which
 triggers the notification.

 The Listener specifies the callback function that is used to process
 the notification.

 Delete a notification:

 <notification_del> := No Notification <notification_id>;

 The No Notification is to delete a notification in user’s network.

5.7 . Connection Management Statements

 In NEMO language, each connection instance is identified by a
 <naming>

Xia, et al. Expires November 5, 2015 [Page 17]

Internet-Draft NEtwork MOdeling Language May 2015

 <conn_id> := <naming> !! name to identify the connection instance

 Setup a connection to the NEMO language engine:

 <connet_cmd> := Connect <conn_id> Address <ip_prefix>
 Port <integer>

 The Connect is followed by a user defined <conn_id>. If the
 <conn_id> is new in the system, a new connection will be created
 automatically. Otherwise, the corresponding connection identified by
 <conn_id> will be updated with the following information.

 The Address and Prot specify the IP address and the port of the NEMO
 language engine to connect separately.

 Disconnect the connection to the NEMO language engine:

 <disconnect_cmd> := Disconnect <conn_id>

 The Disconnect is to remove the connection with an ID equals to
 <conn_id> from the NEMO language engine.

5.8 . Transaction Statements

 <transaction_begin> := Transaction
 <transaction_end> := Commit

 The keywords Transaction and Commit are used to tag begin and end of
 a transaction. The code between the two key words will be
 interpreted as a transaction and executed by the NEMO language
 engine.

6. The NEMO Language Examples

 An enterprise with geographically distributed headquarter and branch
 sites has the requirement to dynamically balance the backup traffic.

 In order to implement this scenario, the virtual WAN tenant creates
 two logicnw, and generates two connections with different SLA to
 carry diverse service flows. One connection has 100M bandwidth with
 less than 50ms delay, which is used for normal traffic. And the
 other connection has 40G bandwidth with less than 400ms delay, which
 is used for backup traffic after work (from 19:00 to 23:00). With
 self defined flow policy, the tenant can manage the connection load
 balancing conveniently.

Xia, et al. Expires November 5, 2015 [Page 18]

Internet-Draft NEtwork MOdeling Language May 2015

 Real-time Connection
 +--------------------+
 192.0.2.0/24 198.51.100.0/24
 +---------+ +-------------+
 | Branch |------------------| Headquarter |
 +---------+ +-------------+
 | |
 +--------------------+
 Broadband Connection

 The detailed operation and code are shown as follows.

 o Step1: Create two virtual logicnw nodes in the WAN

 Node "Branch"
 Type "logicnw"
 NW "LN-1"
 Property "ipv4Prefix" : 192.0.2.0/24;

 Node "Headquarter"
 Type "logicnw"
 NW "LN-1"
 Property "ipv4Prefix" : 198.51.100.0/24;

 o Step2: Connect the two virtual nodes with two virtual connections
 with different SLA.

 Connection "broadband_connection"
 EndNodes "Branch", "Headquater"
 Property "bandwidth" : 40000, "delay" : 400;

 Connection "realtime_connection"
 EndNodes "Branch", "Headquater"
 Property "bandwidth" : 100, "delay" : 50;

 o Step3: Indicate the flow to be operated.

 Flow "flow_all"
 Match "src_ip" : "192.0.2.0/24", "dst_ip": "198.51.100.0/24";

 Flow "flow_backup"
 Match "src_ip" : "192.0.2.0/24", "dst_ip": "198.51.100.0/24",
 "port": 55555;

 o Step4: Apply policies to corresponding flows.

Xia, et al. Expires November 5, 2015 [Page 19]

Internet-Draft NEtwork MOdeling Language May 2015

 P1:
 Policy "policy4all"
 ApplyTo "flow_all"
 Priority 200
 Action "forward_to": "realtime_connection";
 P2:
 Policy "policy4backup"
 ApplyTo "flow_backup"
 Priority 100
 Condition ("time">"19:00:00") || ("time"<"23:00:00")
 Action "forward_to": "broadband_connection";

7. Security Considerations

 Because the network customers are allowed to customize their own
 services, they may bring potentially big impacts to a running IP
 network. A strong user authentication mechanism is needed for the
 northbound interface of the SDN controller. User authorization
 should be carefully managed by the network administrator to avoid any
 dangerous operations and prevent any abuse of network resources.

8. IANA Considerations

 This memo includes no request to IANA.

9. Acknowledgements

 The authors would like to thanks the valuable comments made by Wei
 Cao, Xiaofei Xu, Fuyou Miao, Yali Zhang and Wenyang Lei.

 This document was produced using the xml2rfc tool [RFC2629].

10. Informative References

 [Frenetic]
 Foster, N., Harrison, R., Freedman, M., Monsanto, C.,
 Rexford, J., Story, A., and D. Walker, "Frenetic: A
 Network Programming Languages, ICFP’ 11".

 [I-D.xia-sdnrg-service-description-language]
 Xia, Y., Jiang, S., and S. Hares, "Requirements for a
 Service Description Language and Design Considerations",
 draft-xia-sdnrg-service-description-language-02 (work in
 progress), May 2015.

 [PBNM] Strassner, J., "Policy-Based Network Management: Solutions
 for the Next Generation, Morgan Kaufmann Publishers Inc.
 San Francisco, CA, USA.", 2003.

Xia, et al. Expires November 5, 2015 [Page 20]

http://tools.ietf.org/pdf/rfc2629
http://tools.ietf.org/pdf/draft-xia-sdnrg-service-description-language-02

Internet-Draft NEtwork MOdeling Language May 2015

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 , March 1997.

 [RFC2629] Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629 ,
 June 1999.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122 , July
 2005.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020 ,
 October 2010.

 [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)", RFC
 6241 , June 2011.

 [TSFNet] Yap, K., Huang, T., Dodson, B., Lam, M., and N. McKeown,
 "Towards Software-Friendly Networks, APSys 2010, pp:49-54,
 2010, New Delhi, India.".

Authors’ Addresses

 Yinben Xia (editor)
 Huawei Technologies Co., Ltd
 Q14, Huawei Campus, No.156 Beiqing Road
 Hai-Dian District, Beijing, 100095
 P.R. China

 Email: xiayinben@huawei.com

 Sheng Jiang (editor)
 Huawei Technologies Co., Ltd
 Q14, Huawei Campus, No.156 Beiqing Road
 Hai-Dian District, Beijing, 100095
 P.R. China

 Email: jiangsheng@huawei.com

Xia, et al. Expires November 5, 2015 [Page 21]

http://tools.ietf.org/pdf/bcp14
http://tools.ietf.org/pdf/rfc2119
http://tools.ietf.org/pdf/rfc2629
http://tools.ietf.org/pdf/rfc4122
http://tools.ietf.org/pdf/rfc6020
http://tools.ietf.org/pdf/rfc6241
http://tools.ietf.org/pdf/rfc6241

Internet-Draft NEtwork MOdeling Language May 2015

 Tianran Zhou (editor)
 Huawei Technologies Co., Ltd
 Q14, Huawei Campus, No.156 Beiqing Road
 Hai-Dian District, Beijing, 100095
 P.R. China

 Email: zhoutianran@huawei.com

 Susan Hares
 Huawei Technologies Co., Ltd
 7453 Hickory Hill
 Saline, CA 48176
 USA

 Email: shares@ndzh.com

Xia, et al. Expires November 5, 2015 [Page 22]

