
NeMo compared with Yang and Open Daylight Group Policy

NeMo Project Team (v.2) Page 1

What’s NeMo – A Network Modeling Language?

NeMo is a transaction based North Bound (NB) API which allows applications to use intent-
based policy to create virtual networks comprised of nodes with policy-controlled flows. Intent
based policy is prescriptive (“go to the store”) rather than descriptive (“follow this route to the
store”), leaving the details to the network. NeMo’s NB API connects the application to a
controller and operates using 10 commands which include: 4 basic network commands (Node,
Link, Flow, Policy) and 6 basic controller communication commands (connect, disconnect,
transact, commit, notification, query). NeMo sends these 10 commands via the REST protocol
to exchange the commands with the controller.

Why NeMo?

Software Defined Networking (SDN) and Network Function Virtualization (NFV) are moving
the IT world from a network-centric view to an application view. Google considers the
datacenter to be comprised of compute devices, storage devices, and networks. Applications
running on the Google Cloud must be rewritten to run within this Cloud environment that takes
care of placing applications on compute devices that have the appropriate amount of storage and
network connections. NeMo provides a simple NB API which gives the application the power to
setup and take down virtual networks between virtual nodes.

NeMo Compared with Open Daylight’s Group based product

Open Daylight has a group-based policy project that defines an “application-centric” model that
tries to abstract application policy from details of network policy. Two groups of endpoint
systems communicate across a shared communication path governed by a contract on the
exchange on which one system (EGP 1) and a second system (EGP 2) agree. The contract
consists of policy rules which govern flows specified as match-action pairs. (Details on this
project can be found at: https://wiki.opendaylight.org/view/Group_Policy:Main).

Figure 1 – Open Daylight Group-based Policy concepts

EGP 2 EGP 1

contract

NeMo compared with Yang and Open Daylight Group Policy

NeMo Project Team (v.2) Page 2

The NeMo project group applauds the Group based Policy project (GBP) for its adoption of the
Internet-based framework based on the PCIM work in RFC3060 and RFC3460, and their use of
the prescriptive rather than descriptive language. Both NeMo and Open Daylights Group-Based
Policy manager are looking to provide Intent driven networking. However, the proof of concept
from the GBP policy manager picked different places for the integration. NeMo provides a
simple API for the application’s interface to middle-layers where the NeMo Language engine
communicates with the Virtual Network Engine or multi-vendor SDN controllers. GBP places
the command after the middle layer, causing more details to be given by the application to the
policy manager at a deeper layer. NeMo can treat the Open Daylight policy manager as a
separate engine that it translates, similar to a multi-vendor SDN controller.

Open DayLight Policy Manager Nemo Policy API and Language Engine

Figure 2 – Comparison of Placement in stack of Open Daylight’s Policy Manager and Nemo’s Policy API and
Nemo’s language engine

Open-Daylight’s Group-based policy (GBP) has the following differences from NeMo:

• GBP focus on the policy to control flow behavior, but NeMo handles the whole

network.

Why this is important: Without the capacity to create and control a node and links, it is

hard to manage NFV devices.

• GBP examines a contract between two end systems without considering the

requirements for paths, but NeMo considers the whole path.

Why this is important: While an abstract pathway that GBP provides may be useful for

CLI Heat Horizon

Neutron

Policy Manager

Legacy
Policy
driver

ODL
Policy
Driver

others

NeMo compared with Yang and Open Daylight Group Policy

NeMo Project Team (v.2) Page 3

some Data Centers, it may not describe paths required by legal restrictions (for medical

data), or best-cost network routes.

• GBP operates below the Application interface which does not allow the application to

signal directly its need, and has a mixture of high-level abstraction and lots of details on

the commands. NeMo provides an API for Intent-Driven application that uses only

15 sentences of three action types (node, link, flow), three behaviors types (query,

notification, and policy), 4 transaction messages (connect, disconnect, transaction and

commit),

Why this is important: Past studies (UT-Dallas and others) have shown that the best

utilization of network, compute, and storage is gained when the application and network

cooperate to direct paths. NEMO provides a simple interface that applications can

implement, and allows the vendor to provide a NEMO engine. NEMO combined with

LibVirt may be able to control compute, storage, and network.

• GBP may/may not be extensible to multiple vendor’s SDNs. NEMO was designed with

multiple SDN controllers in mind.

Why this is important: Interoperable SDN controllers remove a single-point of failure in

the network.

NEMO GBP Description

Node EndPoint End point in GBP is more like a port, which can be
used to attach VM allocated by NOVA(an OpenStack
compute component)
Problems: GBP cannot describe NFV device

Node->Logical Node EndPointGroup NEMO allows the nodes at the application view to be
a multiple node cluster with a single set of IP
addresses at the IP layer.
Problem: GBP provides point-to-point policy instead
of network wide-policy.

Link Implicitly expressed by

Contract

1. GBP is a very high level abstraction at the mid-layer
Problem: information like topology is not obvious for
application users.

2. Bandwidth and delay which are more intuitive to be a
link property. However GBP describes this as a QoS
policy.
Problem: User may be confused by QoS policy.

NeMo compared with Yang and Open Daylight Group Policy

NeMo Project Team (v.2) Page 4

NeMo vs OpFlex

The OpFlex protocol (draft-smith-opflex-00) is another intent-based protocol which declares the
policy infrastructure and allows controls to make it happen. The NeMo team is pleased to see
policy repository work that considers centralized methods of policy storage. The OpFlex
protocol stores policies in a central policy repository (PR) and distributes these policies to policy
elements (PE) where the policies are enforced. The OpFlex control protocol allows bidirectional
communication between the PR and the PE so that the policy, events, statistics and faults can go
both directions. OpFlex re-invents many of the same concepts of centralized policy control point
(PCP) and policy enforcement point (PEP) that the COPS protocol (RFC2748, RFC3084, and
RFC4261) contained. This work is an exciting placement outgrowth of the intent-based policy
for centralized storage, but a consideration of virtualized centralized storage (with physically
logical points) may also need to be considered.

Possible Steps for NEMO’s and Open Daylight Group-based Policy

• NEMO’s API is very simple at the application layer so this could be added to the

Neutron application layer,

• NEMO’s code integrated into OpenDaylight Stack - Nemo’s API and Language Engine

can be used within the OpenDaylight stack above an Open-Flow controller,

• NEMO’s code interfaces to the Policy Manager in the Open Daylight stack, and

• Testing to compare effectiveness of OpenDaylights Group-based Policy engine versus

Nemo.

The Nemo Project would like your feedback on these next steps. Please send us a note at
nemo@hickoryhill-consulting.com

Flow Classifier in a policy rule NeMo’s and GBP’s flow match item both support to
IP packet fields, plus interfaces, and non-IP protocols.

Policy Policy rules GBP has a classifier instead of NEMO’s “condition”

in its policy rule. This syntactical difference may

create differences in conditions. .

Problem: GBP policy only applies to flow object.

NEMO policy is extended to link and node.

Notification No

Query No

NeMo compared with Yang and Open Daylight Group Policy

NeMo Project Team (v.2) Page 5

NeMo’s 4 Network Commands in Formal Language

<node_cu> := Node <node_id> Type <node_type> LogicNW <node_id>

 [Property {<property_name>: <value>}];

<link_cu> := Link <link_id> EndNodes <node_type> : <node_id>, <node_type> : <node_id>

 [Property{<property_name>: <value>}];

<flow_cu> := Flow <flow_id> Match {<property_name>: <value>

 | Range (<value>, <value>) | List ({<value>})}

<policy_cu> := Policy <policy_id> ApplyTo <entity_type> : <entity_id>

 Priority <integer> [Condition {<expression>}]
 Action {<action_type> : {<value>}};

A “No” in front of each of these commands deletes these commands. An example of this is:

<node_del> := NoNode <node_id>;

NeMo’s 6 Controller Interaction Commands in Formal Language

!These commands connect and disconnect the application from the controller.

<connect_cmd> := Connect < conn_id > Address <ip_addr> Port <integer>

<disconnet_cmd> := Disconnect < conn_id >

!These commands group a set of policy that need to be enacted together.

<transaction_begin> := Transaction

<transaction_end> := Commit

! These commands query or provide notification of policy information

<query_cmd> := Query {< property_name>} From <entity_type> | <policy_type>: <UUID>

<notification_cu> := Notification <notification_id> Query {< property_name>}
 From <entity_type> : <entity_id>
 Every <integer> Listener <callbackfunc>;

